A Unified Diversity Measure for Multiagent Reinforcement Learning

Abstract

Promoting behavioural diversity is of critical importance in multi-agent reinforcement learning, since it helps the agent population maintain robust performance when encountering unfamiliar opponents at test time, or, when the game is highly non-transitive in the strategy space (e.g., Rock-Paper-Scissor). While a myriad of diversity metrics have been proposed, there are no widely accepted or unified definitions in the literature, making the consequent diversity-aware learning algorithms difficult to evaluate and the insights elusive. In this work, we propose a novel metric called the Unified Diversity Measure (UDM) that offers a unified view for existing diversity metrics. Based on UDM, we design the UDM-Fictitious Play (UDM-FP) and UDM-Policy Space Response Oracle (UDM-PSRO) algorithms as efficient solvers for normal-form games and open-ended games. In theory, we prove that UDM-based methods can enlarge the gamescape by increasing the response capacity of the strategy pool, and have convergence guarantee to two-player Nash equilibrium. We validate our algorithms on games that show strong non-transitivity, and empirical results show that our algorithms achieve better performances than strong PSRO baselines in terms of the exploitability and population effectivity.

Type
Publication
The 36th Conference on Neural Information Processing Systems (NeurIPS 2022)